Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes.

Identifieur interne : 000064 ( Main/Exploration ); précédent : 000063; suivant : 000065

Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes.

Auteurs : Camila Pizano [États-Unis, Colombie] ; Kaoru Kitajima [États-Unis, Panama] ; James H. Graham [États-Unis] ; Scott A. Mangan [Panama, États-Unis]

Source :

RBID : pubmed:31351010

Descripteurs français

English descriptors

Abstract

There is now strong evidence suggesting that interactions between plants and their species-specific antagonistic microbes can maintain native plant community diversity. In contrast, the decay in diversity in plant communities invaded by nonnative plant species might be caused by weakening negative feedback strengths, perhaps because of the increased relative importance of plant mutualists such as arbuscular mycorrhizal fungi (AMF). Although the vast majority of studies examining plant-soil feedbacks have been conducted in a single habitat type, there are fewer studies that have tested how the strength and direction of these feedbacks change across habitats with differing dominating plants. In a fragmented montane agricultural system in Colombia, we experimentally teased apart the relative importance of AMF and non-AMF microbes (a microbial filtrate) to the strength and direction of feedbacks in both native and nonnative plant species. We hypothesized that native tree species of forest fragments would exhibit stronger negative feedbacks with a microbial filtrate that likely contained pathogens than with AMF alone, whereas nonnative plant species, especially a highly invasive dominant grass, would exhibit overall weaker negative feedbacks or even positive feedbacks regardless of the microbial type. We reciprocally inoculated each of 10 plant species separately with either the AMF community or the microbial filtrate originating from their own conspecifics, or with the AMF or microbial filtrate originating from each of the other nine heterospecific plant species. Overall, we found that the strength of negative feedback mediated by the filtrate was much stronger than feedbacks mediated by AMF. Surprisingly, we found that the two nonnative species, Urochloa brizantha and Coffea arabica, experienced stronger negative feedbacks with microbial filtrate than did the native forest tree species, suggesting that species-specific antagonistic microbes accumulate when a single host species dominates, as is the case in agricultural habitats. However, negative feedback between forest trees and agricultural species suggests that soil community dynamics may contribute to the re-establishment of native species into abandoned agricultural lands. Furthermore, our finding of no negative feedbacks among trees in forest fragments may be due to a loss in diversity of those microbes that drive diversity-maintaining processes in intact tropical forests.

DOI: 10.1002/ecy.2850
PubMed: 31351010


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes.</title>
<author>
<name sortKey="Pizano, Camila" sort="Pizano, Camila" uniqKey="Pizano C" first="Camila" last="Pizano">Camila Pizano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Florida, Gainesville, Florida, 32611</wicri:regionArea>
<wicri:noRegion>32611</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biología de la Conservación, Cenicafé, Km4 vía antigua, Chinchiná-Manizales, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Biología de la Conservación, Cenicafé, Km4 vía antigua, Chinchiná-Manizales</wicri:regionArea>
<wicri:noRegion>Chinchiná-Manizales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kitajima, Kaoru" sort="Kitajima, Kaoru" uniqKey="Kitajima K" first="Kaoru" last="Kitajima">Kaoru Kitajima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Florida, Gainesville, Florida, 32611</wicri:regionArea>
<wicri:noRegion>32611</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Smithsonian Tropical Research Institute, Balboa, Panama.</nlm:affiliation>
<country xml:lang="fr">Panama</country>
<wicri:regionArea>Smithsonian Tropical Research Institute, Balboa</wicri:regionArea>
<wicri:noRegion>Balboa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graham, James H" sort="Graham, James H" uniqKey="Graham J" first="James H" last="Graham">James H. Graham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850</wicri:regionArea>
<wicri:noRegion>33850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mangan, Scott A" sort="Mangan, Scott A" uniqKey="Mangan S" first="Scott A" last="Mangan">Scott A. Mangan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Smithsonian Tropical Research Institute, Balboa, Panama.</nlm:affiliation>
<country xml:lang="fr">Panama</country>
<wicri:regionArea>Smithsonian Tropical Research Institute, Balboa</wicri:regionArea>
<wicri:noRegion>Balboa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130</wicri:regionArea>
<orgName type="university">Université Washington de Saint-Louis</orgName>
<placeName>
<settlement type="city">Saint-Louis (Missouri)</settlement>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31351010</idno>
<idno type="pmid">31351010</idno>
<idno type="doi">10.1002/ecy.2850</idno>
<idno type="wicri:Area/Main/Corpus">000060</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000060</idno>
<idno type="wicri:Area/Main/Curation">000060</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000060</idno>
<idno type="wicri:Area/Main/Exploration">000060</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes.</title>
<author>
<name sortKey="Pizano, Camila" sort="Pizano, Camila" uniqKey="Pizano C" first="Camila" last="Pizano">Camila Pizano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Florida, Gainesville, Florida, 32611</wicri:regionArea>
<wicri:noRegion>32611</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biología de la Conservación, Cenicafé, Km4 vía antigua, Chinchiná-Manizales, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Biología de la Conservación, Cenicafé, Km4 vía antigua, Chinchiná-Manizales</wicri:regionArea>
<wicri:noRegion>Chinchiná-Manizales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kitajima, Kaoru" sort="Kitajima, Kaoru" uniqKey="Kitajima K" first="Kaoru" last="Kitajima">Kaoru Kitajima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Florida, Gainesville, Florida, 32611</wicri:regionArea>
<wicri:noRegion>32611</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Smithsonian Tropical Research Institute, Balboa, Panama.</nlm:affiliation>
<country xml:lang="fr">Panama</country>
<wicri:regionArea>Smithsonian Tropical Research Institute, Balboa</wicri:regionArea>
<wicri:noRegion>Balboa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graham, James H" sort="Graham, James H" uniqKey="Graham J" first="James H" last="Graham">James H. Graham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850</wicri:regionArea>
<wicri:noRegion>33850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mangan, Scott A" sort="Mangan, Scott A" uniqKey="Mangan S" first="Scott A" last="Mangan">Scott A. Mangan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Smithsonian Tropical Research Institute, Balboa, Panama.</nlm:affiliation>
<country xml:lang="fr">Panama</country>
<wicri:regionArea>Smithsonian Tropical Research Institute, Balboa</wicri:regionArea>
<wicri:noRegion>Balboa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130</wicri:regionArea>
<orgName type="university">Université Washington de Saint-Louis</orgName>
<placeName>
<settlement type="city">Saint-Louis (Missouri)</settlement>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="eISSN">1939-9170</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Colombia (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Colombie (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycorhizes (MeSH)</term>
<term>Racines de plante (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Colombia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Forests</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Colombie</term>
<term>Forêts</term>
<term>Microbiologie du sol</term>
<term>Mycorhizes</term>
<term>Racines de plante</term>
<term>Sol</term>
<term>Écosystème</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Colombie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is now strong evidence suggesting that interactions between plants and their species-specific antagonistic microbes can maintain native plant community diversity. In contrast, the decay in diversity in plant communities invaded by nonnative plant species might be caused by weakening negative feedback strengths, perhaps because of the increased relative importance of plant mutualists such as arbuscular mycorrhizal fungi (AMF). Although the vast majority of studies examining plant-soil feedbacks have been conducted in a single habitat type, there are fewer studies that have tested how the strength and direction of these feedbacks change across habitats with differing dominating plants. In a fragmented montane agricultural system in Colombia, we experimentally teased apart the relative importance of AMF and non-AMF microbes (a microbial filtrate) to the strength and direction of feedbacks in both native and nonnative plant species. We hypothesized that native tree species of forest fragments would exhibit stronger negative feedbacks with a microbial filtrate that likely contained pathogens than with AMF alone, whereas nonnative plant species, especially a highly invasive dominant grass, would exhibit overall weaker negative feedbacks or even positive feedbacks regardless of the microbial type. We reciprocally inoculated each of 10 plant species separately with either the AMF community or the microbial filtrate originating from their own conspecifics, or with the AMF or microbial filtrate originating from each of the other nine heterospecific plant species. Overall, we found that the strength of negative feedback mediated by the filtrate was much stronger than feedbacks mediated by AMF. Surprisingly, we found that the two nonnative species, Urochloa brizantha and Coffea arabica, experienced stronger negative feedbacks with microbial filtrate than did the native forest tree species, suggesting that species-specific antagonistic microbes accumulate when a single host species dominates, as is the case in agricultural habitats. However, negative feedback between forest trees and agricultural species suggests that soil community dynamics may contribute to the re-establishment of native species into abandoned agricultural lands. Furthermore, our finding of no negative feedbacks among trees in forest fragments may be due to a loss in diversity of those microbes that drive diversity-maintaining processes in intact tropical forests.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31351010</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-9170</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes.</ArticleTitle>
<Pagination>
<MedlinePgn>e02850</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ecy.2850</ELocationID>
<Abstract>
<AbstractText>There is now strong evidence suggesting that interactions between plants and their species-specific antagonistic microbes can maintain native plant community diversity. In contrast, the decay in diversity in plant communities invaded by nonnative plant species might be caused by weakening negative feedback strengths, perhaps because of the increased relative importance of plant mutualists such as arbuscular mycorrhizal fungi (AMF). Although the vast majority of studies examining plant-soil feedbacks have been conducted in a single habitat type, there are fewer studies that have tested how the strength and direction of these feedbacks change across habitats with differing dominating plants. In a fragmented montane agricultural system in Colombia, we experimentally teased apart the relative importance of AMF and non-AMF microbes (a microbial filtrate) to the strength and direction of feedbacks in both native and nonnative plant species. We hypothesized that native tree species of forest fragments would exhibit stronger negative feedbacks with a microbial filtrate that likely contained pathogens than with AMF alone, whereas nonnative plant species, especially a highly invasive dominant grass, would exhibit overall weaker negative feedbacks or even positive feedbacks regardless of the microbial type. We reciprocally inoculated each of 10 plant species separately with either the AMF community or the microbial filtrate originating from their own conspecifics, or with the AMF or microbial filtrate originating from each of the other nine heterospecific plant species. Overall, we found that the strength of negative feedback mediated by the filtrate was much stronger than feedbacks mediated by AMF. Surprisingly, we found that the two nonnative species, Urochloa brizantha and Coffea arabica, experienced stronger negative feedbacks with microbial filtrate than did the native forest tree species, suggesting that species-specific antagonistic microbes accumulate when a single host species dominates, as is the case in agricultural habitats. However, negative feedback between forest trees and agricultural species suggests that soil community dynamics may contribute to the re-establishment of native species into abandoned agricultural lands. Furthermore, our finding of no negative feedbacks among trees in forest fragments may be due to a loss in diversity of those microbes that drive diversity-maintaining processes in intact tropical forests.</AbstractText>
<CopyrightInformation>© 2019 by the Ecological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pizano</LastName>
<ForeName>Camila</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-4124-1348</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biología de la Conservación, Cenicafé, Km4 vía antigua, Chinchiná-Manizales, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kitajima</LastName>
<ForeName>Kaoru</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Smithsonian Tropical Research Institute, Balboa, Panama.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>James H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mangan</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Smithsonian Tropical Research Institute, Balboa, Panama.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003105" MajorTopicYN="N" Type="Geographic">Colombia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">coffee plantations</Keyword>
<Keyword MajorTopicYN="Y">forest fragments</Keyword>
<Keyword MajorTopicYN="Y">montane tropical forest</Keyword>
<Keyword MajorTopicYN="Y">nonarbuscular mycorrhizal fungi soil microbes</Keyword>
<Keyword MajorTopicYN="Y">pastures</Keyword>
<Keyword MajorTopicYN="Y">pioneer</Keyword>
<Keyword MajorTopicYN="Y">plant-soil feedbacks</Keyword>
<Keyword MajorTopicYN="Y">shade-tolerant</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31351010</ArticleId>
<ArticleId IdType="doi">10.1002/ecy.2850</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Agrawal, A., P. Kotanen, C. Mitchell, A. Power, W. Godsoe, and J. Klironomos. 2005. Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979-2989.</Citation>
</Reference>
<Reference>
<Citation>Almeida-Neto, M., P. I. Prado, U. Kubota, J. M. Bariani, G. H. Aguirre, and T. M. Lewinsohn. 2010. Invasive grasses and native Asteraceae in the Brazilian Cerrado. Plant Ecology 209:109-122.</Citation>
</Reference>
<Reference>
<Citation>Anacker, B. L., J. N. Klironomos, H. Maherali, K. O. Reinhart, and S. Y. Strauss. 2014. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecology Letters 17:1613-1621.</Citation>
</Reference>
<Reference>
<Citation>Augspurger, C. K. 1984. Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65:1705-1712.</Citation>
</Reference>
<Reference>
<Citation>Bascompte, J. 2009. Mutualistic networks. Frontiers in Ecology and the Environment 7:429-436.</Citation>
</Reference>
<Reference>
<Citation>Bennett, J. A., H. Maherali, K. O. Reinhart, Y. Lekberg, M. H. Hart, and J. Klironomos. 2017. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181-184.</Citation>
</Reference>
<Reference>
<Citation>Bever, J. D. 2002. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society of London B 269:2595-2601.</Citation>
</Reference>
<Reference>
<Citation>Bever, J. D. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist 157:465-473.</Citation>
</Reference>
<Reference>
<Citation>Bever, J. D., J. B. Morton, J. Antonovics, and P. A. Schultz. 1996. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84:71-82.</Citation>
</Reference>
<Reference>
<Citation>Bever, J. D., K. M. Westover, and J. Antonovics. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology 85:561-573.</Citation>
</Reference>
<Reference>
<Citation>Bever, J. D., S. A. Mangan, and H. M. Alexander. 2015. Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics 46:305-325.</Citation>
</Reference>
<Reference>
<Citation>Brinkman, E. P., W. H. Van der Putten, E. J. Bakker, and K. J. F. Verhoeven. 2010. Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology 98:1063-1073.</Citation>
</Reference>
<Reference>
<Citation>Callaway, R., B. Mahall, C. Wicks, J. Pankey, and C. Zabinski. 2003. Soil fungi and the effects of an invasive forb on grasses: Neighbor identity matters. Ecology 84:129-135.</Citation>
</Reference>
<Reference>
<Citation>Callaway, R., G. Thelen, A. Rodriguez, and W. Holben. 2004. Soil biota and exotic plant invasion. Nature 427:731-733.</Citation>
</Reference>
<Reference>
<Citation>Casper, B. B., S. P. Bentivenga, B. Ji, J. H. Doherty, H. M. Edenborn, and D. J. Gustafson. 2008. Plant-soil feedback: Testing the generality with the same grasses in serpentine and prairie soils. Ecology 89:2154-2164.</Citation>
</Reference>
<Reference>
<Citation>Castelli, J., and B. Casper. 2003. Intraspecific AM fungal variation contributes to plant-fungal feedback in a serpentine grassland. Ecology 84:323-336.</Citation>
</Reference>
<Reference>
<Citation>Castro-Caicedo, B. L. 2003b. Llagas radiculares: Rosellinia bunodes y Rosellinia pepo. Pages 100-106 in L. F. Gil-Vallejo, B. L. Castro-Caicedo, and G. Cadena, editors. Enfermedades del Cafeto en Colombia. Cenicafé, Chinchiná, Colombia.</Citation>
</Reference>
<Reference>
<Citation>Castro-Caicedo, B. L. 2003a. Llaga macana: Ceratocystis fimbriata. Pages 107-114 in L. F. Gil-Vallejo, B. L. Castro-Caicedo, and G. Cadena, editors. Enfermedades del Cafeto en Colombia. Cenicafé, Chinchiná, Colombia.</Citation>
</Reference>
<Reference>
<Citation>Chiuffo, M. C., A. S. MacDougall, and J. L. Hierro. 2015. Native and non-native ruderals experience similar plant-soil feedbacks and neighbor effects in a system whey they coexist. Oecologia 179:843-852.</Citation>
</Reference>
<Reference>
<Citation>Crawford, K. M., and T. M. Knight. 2017. Competition overwhelms the positive plant-soil feedback generated by an invasive plant. Oecologia 183:211-220.</Citation>
</Reference>
<Reference>
<Citation>Crawford, K. M. et al. 2019. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters 22:1274-1284.</Citation>
</Reference>
<Reference>
<Citation>Daniels, B. A., and H. D. Skipper. 1982. Methods for the recovery and quantitative estimation of propagules from soil. Page 29 in N. C. Schenck, editor. Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minnesota, USA.</Citation>
</Reference>
<Reference>
<Citation>Dawson, W., and M. Schrama. 2016. Identifying the role of soil microbes in plant invasion. Journal of Ecology 104:1211-1218.</Citation>
</Reference>
<Reference>
<Citation>Day, N. J., K. E. Dunfield, and P. M. Antunes. 2015. Temporal dynamics of plant-soil feedback and root-associated fungal communities over 100 years of invasion by a non-native plant. Journal of Ecology 103:1557-1569.</Citation>
</Reference>
<Reference>
<Citation>Dòstalek, T., Z. Münzbergová, A. Kladivová, and M. Macel. 2016. Plant-soil feedback in native vs. invasive populations of a range expanding plant. Plant and Soil 399:209-220.</Citation>
</Reference>
<Reference>
<Citation>Eppinga, M. B., M. Baudena, D. J. Johnson, J. Jiang, K. M. L. Mack, A. E. Strand, and J. D. Bever. 2018. Frequency-dependent feedback constrains plant community coexistence. Nature Ecology and Evolution 2:1403-1407.</Citation>
</Reference>
<Reference>
<Citation>Fitzpatrick, C., J. Copeland, P. W. Wang, D. S. Guttman, P. M. Kotanen, and M. T. J. Johnson. 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences 115:E1157-E1165.</Citation>
</Reference>
<Reference>
<Citation>Gaitán, A. L. 2003. Volcamiento o mal del tallito: Rhizoctonia solani. Pages 86-90 in L. F. Gil-Vallejo, B. L. Castro-Caicedo, and G. Cadena, editors. Enfermedades del Cafeto en Colombia. Cenicafé, Chinchiná, Colombia.</Citation>
</Reference>
<Reference>
<Citation>García-Parisi, P. A., and M. Omacini. 2017. Arbuscular mycorrhizal fungi can shift plant-soil feedback of grass-endophyte symbiosis from negative to positive. Plant and Soil 419:13-23.</Citation>
</Reference>
<Reference>
<Citation>Ghorbani, R., S. Wilcockson, A. Koocheki, and C. Leifert. 2008. Soil management for sustainable crop disease control: a review. Environmental Chemistry Letters 6:149-162.</Citation>
</Reference>
<Reference>
<Citation>Gibbons, S. M., Y. Lekberg, D. L. Mummey, N. Sangwan, P. W. Ramsey, and J. A. Gilbert. 2017. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2:e00178-16.</Citation>
</Reference>
<Reference>
<Citation>Gilbert, G., and S. Hubbell. 1996. Plant diseases and the conservation of tropical forests-Conservation planners need to consider the roles diseases play in natural communities. BioScience 46:98-106.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Aparicio, L., B. Ibáñez, M. S. Serrano, P. De Vita, J. M. Ávila, I. M. Pérez-Ramos, L. V. García, M. E. Sánchez, and T. Marañón. 2012. Spatial patterns of soil pathogens in declining Mediterranean forests: implications for tree species regeneration. New Phytologist 194:1014-1024.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Aparicio, L., J. Domínguez-Begines, P. Kardol, J. M. Ávila, B. Ibáñez, and L. V. García. 2017. Plant-soil feedbacks in declining forests: implications for species coexistence. Ecology 98:1908-1921.</Citation>
</Reference>
<Reference>
<Citation>Guzmán-Martinez, O., A. Jaramillo-Robledo, and J. V. Baldión-Rincón. 2006. Anuario Metereológico Cafetero 2006. Federación Nacional de Cafeteros de Colombia, Centro Nacional de Investigaciones de Café Cenicafé, Chinchiná, Colombia.</Citation>
</Reference>
<Reference>
<Citation>Harrison, K. A., and R. D. Bardgett. 2010. Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology 98:384-395.</Citation>
</Reference>
<Reference>
<Citation>Holl, K., and M. Lulow. 1997. Effects of species, habitat, and distance from edge on post-dispersal seed predation in a tropical rainforest. Biotropica 29:459-468.</Citation>
</Reference>
<Reference>
<Citation>Holl, K., M. Loik, E. Lin, and I. Samuels. 2000. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restoration Ecology 8:339-349.</Citation>
</Reference>
<Reference>
<Citation>Hooper, E., P. Legendre, and R. Condit. 2005. Barriers to forest regeneration of deforested and abandoned land in Panama. Journal of Applied Ecology 42:1165-1174.</Citation>
</Reference>
<Reference>
<Citation>Kiers, E. T., T. M. Palmer, A. R. Ives, J. F. Bruno, and J. L. Bronstein. 2010. Mutualisms in a changing world: an evolutionary perspective. Ecology Letters 13:1459-1474.</Citation>
</Reference>
<Reference>
<Citation>Klironomos, J. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67-70.</Citation>
</Reference>
<Reference>
<Citation>LaManna, J. A. et al. 2017. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389-1392.</Citation>
</Reference>
<Reference>
<Citation>Liang, M., L. Xubing, R. S. Etienne, F. Huang, Y. Wang, and S. Yu. 2015. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology 96:562-574.</Citation>
</Reference>
<Reference>
<Citation>Liu, X., J. Zhang, T. Gu, W. Zhang, Q. Shen, S. Yin, and H. Qiu. 2014. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE 9:e86610.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., S. Fang, P. Chesson, and F. He. 2015. The effect of soil-borne pathogens depends on the abundance of the host tree species. Nature Communications 6:10017.</Citation>
</Reference>
<Reference>
<Citation>Lodge, D. J. 2001. Diversidad mundial y regional de hongos. Pages 291-304 in H. M. Hernández, A. N. García, F. Álvarez, and M. Ulloa, editors. Enfoques contemporáneos para el estudio de la biodiversidad. UNAM, Mexico City, Mexico.</Citation>
</Reference>
<Reference>
<Citation>Mackay, J., and P. M. Kotanen. 2008. Local escape of an invasive plant, common ragweed (Ambrosia artemisiifolia L.), from above-ground and below-ground enemies in its native area. Journal of Ecology 96:1152-1161.</Citation>
</Reference>
<Reference>
<Citation>Mangan, S., A. Eom, G. Adler, J. Yavitt, and E. Herre. 2004. Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687-700.</Citation>
</Reference>
<Reference>
<Citation>Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C. Valencia, E. I. Sanchez, and J. D. Bever. 2010b. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752-755.</Citation>
</Reference>
<Reference>
<Citation>Mangan, S. A., E. A. Herre, and J. D. Bever. 2010a. Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback. Ecology 91:2594-2603.</Citation>
</Reference>
<Reference>
<Citation>Marden, J. H., S. A. Mangan, M. P. Peterson, E. Wafula, H. W. Fescemyer, J. P. Der, C. W. Depamphilis, and L. S. Comita. 2017. Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Molecular Ecology 26:2498-2513.</Citation>
</Reference>
<Reference>
<Citation>Mariette, N., A. Kröner, R. Mabon, J. Montarry, B. Marquer, R. Corbiére, A. Androdias, and D. Andrivon. 2018. A trade-off between sporangia size and number exists in the Potato Late Blight pathogen Phytophthora infestans and is not altered by biotic and abiotic factors. Frontiers in Plant Science 9:1841.</Citation>
</Reference>
<Reference>
<Citation>Maron, J. L., J. Klironomos, L. Waller, and R. M. Callaway. 2014. Invasive plants escape from suppressive soil biota at regional scales. Journal of Ecology 102:19-27.</Citation>
</Reference>
<Reference>
<Citation>McCarthy-Neumann, S., and R. K. Kobe. 2008. Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology 89:1883-1892.</Citation>
</Reference>
<Reference>
<Citation>McCarthy-Neumann, S., and R. K. Kobe. 2010. Conspecific and heterospecific plant-soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology 98:408-418.</Citation>
</Reference>
<Reference>
<Citation>Moora, M., M. Opik, R. Sen, and M. Zobel. 2004. Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Functional Ecology 18:554-562.</Citation>
</Reference>
<Reference>
<Citation>Müller, G., M. van Kleunen, and W. Dawson. 2016. Commonness and rarity of alien and native species-the relative roles of intraspecific competition and plant-soil feedback. Oikos 125:1458-1466.</Citation>
</Reference>
<Reference>
<Citation>Munkvold, L., R. Kjøller, M. Vestberg, S. Rosendahl, and I. Jakobsen. 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist 164:357-364.</Citation>
</Reference>
<Reference>
<Citation>Nijjer, S., W. E. Rogers, and E. Siemann. 2007. Negative plant-soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens. Proceedings of the Royal Society B 274:2621-2627.</Citation>
</Reference>
<Reference>
<Citation>Orrego, O., J. Botero, J. Verhelst, A. Pfeifer, J. López, V. Franco, and J. Vélez. 2004. Plantas vasculares del municipio de Manizales, Caldas, Colombia. Boletin de Museo de Historia Natural de la Universidad de Caldas 8:61-106.</Citation>
</Reference>
<Reference>
<Citation>Ortíz-Escobar, M. E., R. D. Zapata-Hernández, S. Sadeghian-Khalajabadi, and H. F. Franco-Alvarez. 2004. Aluminio intercambiable en suelos con propiedades ándicas y su relación con la toxicidad. Cenicafé 55:101-110.</Citation>
</Reference>
<Reference>
<Citation>Parsons, J. 1972. Spread of African pasture grasses to the American tropics. Journal of Range Management 25:12-17.</Citation>
</Reference>
<Reference>
<Citation>Perkins, L. B., G. Hatfield, and E. K. Espeland. 2016. Invasive grass consistently create similar plant-soil feedback types in soils collected from geographically distant locations. Journal of Plant Ecology 9:180-186.</Citation>
</Reference>
<Reference>
<Citation>Petermann, J. S., A. J. F. Fergus, L. A. Turnbull, and B. Schmid. 2008. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89:2399-2406.</Citation>
</Reference>
<Reference>
<Citation>Pizano, C., S. A. Mangan, J. H. Graham, and K. Kitajima. 2017. Host-specific effects of soil microbial filtrates prevail over those of arbuscular mycorrhizae in a fragmented landscape. Ecological Applications 27:1946-1957.</Citation>
</Reference>
<Reference>
<Citation>Reinhart, K., and R. Callaway. 2006. Soil biota and invasive plants. New Phytologist 170:445-457.</Citation>
</Reference>
<Reference>
<Citation>Reinhart, K. O., A. Packer, W. H. Van Der Putten, and K. Clay. 2003. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters 6:1046-1050.</Citation>
</Reference>
<Reference>
<Citation>Reynolds, H., A. Packer, J. Bever, and K. Clay. 2003. Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281-2291.</Citation>
</Reference>
<Reference>
<Citation>Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution and Systematics 40:245-269.</Citation>
</Reference>
<Reference>
<Citation>Sedio, B. E., and A. M. Ostling. 2013. How specialised must natural enemies be to facilitate coexistence among plants? Ecology Letters 16:995-1003.</Citation>
</Reference>
<Reference>
<Citation>Stump, S. M., and P. Chesson. 2015. Distance-responsive predation is not necessary for the Janzen-Connell hypothesis. Theoretical Population Biology 106:60-70.</Citation>
</Reference>
<Reference>
<Citation>Subbarao, G. V. et al. 2009. Evidence for biological nitrification inhibition in Urochloa pastures. Proceedings of the National Academy of Sciences of the United States of America 106:17302-17307.</Citation>
</Reference>
<Reference>
<Citation>Teste, F. P., P. Kardol, B. L. Turner, D. A. Wardle, G. Zemunik, M. Renton, and E. Laliberté. 2017. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:173-176.</Citation>
</Reference>
<Reference>
<Citation>Van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, T. Boller, P. Moutoglis, R. Streitwolf-Engel, A. Wiemken, and I. R. Sanders. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72.</Citation>
</Reference>
<Reference>
<Citation>Van der Heijden, M. G. A., R. Streitwolf-Engel, R. Riedl, S. Siegrist, A. Neudecker, K. Ineichen, T. Boller, A. Wiemken, and I. R. Sanders. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172:739-752.</Citation>
</Reference>
<Reference>
<Citation>Van der Heijden, M. G. A., R. D. Bardgett, and N. M. van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11:296-310.</Citation>
</Reference>
<Reference>
<Citation>Van der Putten, W. H. et al. 2013. Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology 101:265-276.</Citation>
</Reference>
<Reference>
<Citation>Van Grunsven, R. H. A., W. H. Van Der Putten, T. M. Bezemer, W. L. M. Tamis, F. Berendse, and E. M. Veenendaal. 2007. Reduced plant-soil feedback of plant species expanding their range as compared to natives. Journal of Ecology 95:1050-1057.</Citation>
</Reference>
<Reference>
<Citation>Van Kleunen, M., E. Weber, and M. Fischer. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13:235-245.</Citation>
</Reference>
<Reference>
<Citation>Verbruggen, E., and E. T. Kiers. 2010. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evolutionary Applications 3:547-560.</Citation>
</Reference>
<Reference>
<Citation>Vogelsang, K. M., and J. D. Bever. 2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399-407.</Citation>
</Reference>
<Reference>
<Citation>Vogelsang, K. M., H. L. Reynolds, and J. D. Bever. 2006. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist 172:554-562.</Citation>
</Reference>
<Reference>
<Citation>Wolfe, B., and J. Klironomos. 2005. Breaking new ground: Soil communities and exotic plant invasion. BioScience 55:477-487.</Citation>
</Reference>
<Reference>
<Citation>Zangaro, W., V. Bononi, and S. Trufen. 2000. Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. Journal of Tropical Ecology 16:603-621.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Colombie</li>
<li>Panama</li>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
<settlement>
<li>Saint-Louis (Missouri)</li>
</settlement>
<orgName>
<li>Université Washington de Saint-Louis</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Pizano, Camila" sort="Pizano, Camila" uniqKey="Pizano C" first="Camila" last="Pizano">Camila Pizano</name>
</noRegion>
<name sortKey="Graham, James H" sort="Graham, James H" uniqKey="Graham J" first="James H" last="Graham">James H. Graham</name>
<name sortKey="Kitajima, Kaoru" sort="Kitajima, Kaoru" uniqKey="Kitajima K" first="Kaoru" last="Kitajima">Kaoru Kitajima</name>
<name sortKey="Mangan, Scott A" sort="Mangan, Scott A" uniqKey="Mangan S" first="Scott A" last="Mangan">Scott A. Mangan</name>
</country>
<country name="Colombie">
<noRegion>
<name sortKey="Pizano, Camila" sort="Pizano, Camila" uniqKey="Pizano C" first="Camila" last="Pizano">Camila Pizano</name>
</noRegion>
</country>
<country name="Panama">
<noRegion>
<name sortKey="Kitajima, Kaoru" sort="Kitajima, Kaoru" uniqKey="Kitajima K" first="Kaoru" last="Kitajima">Kaoru Kitajima</name>
</noRegion>
<name sortKey="Mangan, Scott A" sort="Mangan, Scott A" uniqKey="Mangan S" first="Scott A" last="Mangan">Scott A. Mangan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31351010
   |texte=   Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31351010" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020